본문 바로가기
Probability 110

[하버드] 확률론 기초: Statistics 110 목록

by Keep It Simple, Stupid! 2020. 7. 8.
  • 1강- 확률과 셈 원리 (Probability and Counting)
  • 2강- 해석을 통한 문제풀이 및 확률의 공리 (Story Proofs, Axioms of Probability)
  • 3강- Birthday Problem과 확률의 특성 (Birthday Problem, Properties of Probability)
  • 4강- 조건부 확률 (Conditional Probability)
  • 5강- 조건부 확률과 전확률정리 (Conditioning Continued, Law of Total Probability)
  • 6강- Monty Hall 문제와 심슨의 역설 (Monty Hall, Simpson's Paradox)
  • 7강- 도박꾼의 파산 문제와 확률변수 (Gambler's Ruin and Random Variables)
  • 8강- 확률변수와 확률분포 (Random Variables and Their Distributions)
  • 9강- 기댓값, 지시확률변수와 선형성 (Expectation, Indicator Random Variables, Linearity)
  • 10강- 기댓값 (Expectation Continued)
  • 11강- 포아송분포 (The Poisson distribution)
  • 12강- 이산, 연속, 균등분포 (Discrete vs. Continuous, the Uniform)
  • 13강- 정규분포 (Normal Distribution)
  • 14강- 위치, 척도 및 무의식적인 통계학자의 법칙(Location, Scale, and LOTUS)
  • 15강- Midterm Review
  • 16강- 지수분포(Exponential Distribution)
  • 17강- 적률생성함수(Moment Generating Functions)
  • 18강- 적률생성함수_2 (MGFs Continued)
  • 19강- 결합, 조건부, 주변 확률질량함수(Joint, Conditional, and Marginal Distributions)
  • 20강- 다항분포 및 코시분포(Multinomial and Cauchy)
  • 21강- 공분산과 상관계수(Covariance and Correlation)
  • 22강- 변수변환과 합성곱(Transformations and Convolutions)
  • 23강- 베타분포(Beta disctribution)
  • 24강- 감마분포와 포아송 과정(Gamma distribution and Poisson process)
  • 25강- 순서통계량과 조건부 기댓값(Order Statistics and Conditional Expectations)
  • 26강- 조건부 기댓값_2(Conditional Expectation Continuted)
  • 27강- 조건부 기댓값_3(Conditional Expectation given an R.V.)
  • 28강- 부등식(Inequalities)
  • 29강- 큰 수의 법칙과 중심극한정리(Law of Large Numbers and Central Limit Theorem)
  • 30강- 카이제곱분포, t분포, 다변량정규분포(Chi-Square, Student-t, Multivariate Normal)
  • 31강- 마코프 체인(Markov Chains)
  • 32강- 마코프 체인_2(Markov Chains Continued)
  • 33강- 마코프 체인_3(Markov Chains Continued Further)

댓글