Loading [MathJax]/jax/output/CommonHTML/jax.js
본문 바로가기
Optimization Theory (최적화 이론)/PART 3. LINEAR PROGRAMMING

Introduction to linear programming

by Keep It Simple, Stupid! 2020. 6. 18.

15.1 Brief History of Linear Programming


생략

 

15.2 Simple Examples of Linear Programs 


Formally, a linear program is an optimization problem of the form

maximizecx subject to Axbx0

where cRn,bRm, and ARm×n. The vector inequality x0 means that each component of x is nonnegative. 

 이 번 Section은 LP의 중요성과 다양한 응용 문제를 풀어보는 간단한 예제를 다룬다.

the problem can be written in the compact form 

maximizecx subject to Axbx0

where

c=[6,4,7,5]A=[1212653234912],b=[2010075]

 

15.3 Two-Dimensional Linear Programs 


Many fundamental concepts of linear programming are easily illustrated in two-dimensional space. Therefore, we consider linear problems in R2 before discussing general linear programming problems. Consider the following linear program

maximizecx subject to Axbx0

where x=[x1,x2] and

c=[1,5]A=[5632],b=[3012]

 

15.4 Convex Polyhedra and Linear Programming 


The goal of linear programming is to minimize (or maximize) a linear objective function 

cx=c1x1+c2x2++cnxn

subject to constraints that are represented by linear equalities and/or inequalities.

생략

 

15.5 Standard Form Linear Programs


We refer to a linear program of the form 

$$\begin{array}{cl} 
\operatorname{maximize} & \boldsymbol{c}^{\top} \boldsymbol{x} \\ 
\text { subject to } & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\ 
& \boldsymbol{x} \geq \mathbf{0} 
\end{array}$$

as a linear program in standard form. Here A is an m×n matrix composed of real entries, m<n,rankA=m.  Without loss of generality, we assume that b0. If a component of b is negative, say the ith component, we multiply the ith constraint by —1 to obtain a positive right-hand side. 

 

댓글